Mastering Trigonometric Functions with NumPy in Python
  When working with mathematical computations in Python, NumPy is an
    essential library. It offers several powerful functions for performing
    trigonometric calculations with ease.
  (ufuncs) such as sin(), cos(), and tan() which accept input in radians
      and return their corresponding sine, cosine, and tangent values.
Program:
Calculate the Sine of π/2
  import numpy as np
x = np.sin(np.pi / 2)
  print(x)
Output:
1.0
Program:
  Calculate Sine Values for Multiple Angles
  import numpy as np
  arr = np.array([np.pi/2, np.pi/3, np.pi/4, np.pi/5])
x = np.sin(arr)
  print(x)
Output:
  [1.         0.8660254  0.70710678 
    0.58778525]
Converting Degrees to Radians
  By default, trigonometric functions in NumPy expect radian inputs. But if
    you have angles in degrees, you can easily convert them using
    np.deg2rad().
Formula:
  radians = degrees × (Ï€ / 180)
Program:
Convert Degrees to Radians
  import numpy as np
  arr = np.array([90, 180, 270, 360])
x = np.deg2rad(arr)
  print(x)
Output:
  [1.57079633 3.14159265 4.71238898 6.28318531]
Converting Radians to Degrees
  Similarly, you can convert radian values back to degrees using
    np.rad2deg().
  
Program: 
Convert Radians to Degrees
  import numpy as np
  arr = np.array([np.pi/2, np.pi, 1.5*np.pi, 2*np.pi])
x = np.rad2deg(arr)
  print(x)
Output:
[ 90. 180. 270. 360.]
Inverse Trigonometric Functions (Finding Angles)
  NumPy also provides functions for inverse trigonometric operations:
arcsin()
arccos()
arctan()
  These functions return angles in radians.
Program:
Find Angle for sin⁻¹(1.0)
  import numpy as np
x = np.arcsin(1.0)
  print(x)
Output:
1.5707963267948966
Find Angles for Multiple Sine Values
Program:
  import numpy as np
arr = np.array([1, -1, 0.1])
x = np.arcsin(arr)
  print(x)
Output:
  [ 1.57079633 -1.57079633  0.10016742]
Calculate Hypotenuse (Pythagorean Theorem)
  Need to calculate the hypotenuse? NumPy’s hypot() function makes it
    simple:
Formula:
  hypotenuse = √(base² + perpendicular²)
Program:
  Calculate Hypotenuse for Base=3 and Perpendicular=4
  import numpy as np
base = 3
perp = 4
x = np.hypot(base, perp)
  print(x)
Output:
5.0
More topic in Numpy

