Simple Arithmetic

M.Ramya

 Simple Arithmetic with NumPy Arrays

In NumPy, you can easily perform arithmetic operations like addition, subtraction, multiplication, and division directly on arrays using arithmetic operators (+, -, *, /). However, NumPy also provides dedicated functions that extend this functionality.

These functions can work not only with NumPy arrays but also with other array-like objects such as lists and tuples. A key feature of these functions is the where parameter, which allows you to perform operations conditionally—that is, only on elements that meet a certain condition.





1. Addition

The np.add() function adds corresponding elements from two arrays and returns the result as a new array.

Program:

Adding values from two arrays:
import numpy as np
arr1 = np.array([10, 11, 12, 13, 14, 15])
arr2 = np.array([20, 21, 22, 23, 24, 25])
newarr = np.add(arr1, arr2)
print(newarr)

Output:

[30 32 34 36 38 40]

2. Subtraction

The np.subtract() function subtracts the elements of one array from another.

Program:

Subtracting values in arr2 from arr1:
import numpy as np
arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([20, 21, 22, 23, 24, 25])
newarr = np.subtract(arr1, arr2)
print(newarr)

Output:

[-10  -1   8  17  26  35]

3. Multiplication

The np.multiply() function multiplies corresponding elements from two arrays.

Program:

import numpy as np
arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([20, 21, 22, 23, 24, 25])
newarr = np.multiply(arr1, arr2)
print(newarr)

Output:

[ 200  420  660  920 1200 1500]

4. Division

The np.divide() function divides elements of one array by another.

Program:

import numpy as np
arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 5, 10, 8, 2, 33])
newarr = np.divide(arr1, arr2)
print(newarr)

Output:

[ 3.33333333  4.          3.          5.         25.          1.81818182]

5. Power

The np.power() function raises elements of one array to the powers specified by another array.

Program:

import numpy as np
arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 5, 6, 8, 2, 33])
newarr = np.power(arr1, arr2)
print(newarr)

Output:

[       1000    3200000  729000000 6553600000000        2500           0]

6. Remainder (Modulo)

The np.mod() and np.remainder() functions both return the remainder after division.

Program:

import numpy as np
arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 7, 9, 8, 2, 33])
newarr = np.mod(arr1, arr2)
print(newarr)

Output:

[1 6 3 0 0 27]

7. Quotient and Remainder Together

The np.divmod() function returns both the quotient and the remainder as a pair of arrays.

Program:

import numpy as np
arr1 = np.array([10, 20, 30, 40, 50, 60])
arr2 = np.array([3, 7, 9, 8, 2, 33])
quotient, remainder = np.divmod(arr1, arr2)
print((quotient, remainder))

Output:

(array([ 3,  2,  3,  5, 25,  1]), array([1, 6, 3, 0, 0, 27]))

8. Absolute Values

To get the absolute value of each element in an array, use np.absolute() or np.abs(). However, it’s recommended to use np.absolute() to avoid confusion with Python’s built-in abs().


Program:

import numpy as np
arr = np.array([-1, -2, 1, 2, 3, -4])
newarr = np.absolute(arr)
print(newarr)

Output:

[1 2 1 2 3 4]

Summary:

These NumPy arithmetic functions not only simplify operations but also provide greater flexibility with conditional execution using the where parameter, making them more versatile than using simple operators.

Tags
Our website uses cookies to enhance your experience. Learn More
Accept !

GocourseAI

close
send